Quantification of jet flow by momentum analysis. An in vitro color Doppler flow study.

نویسندگان

  • J D Thomas
  • C M Liu
  • F A Flachskampf
  • J P O'Shea
  • R Davidoff
  • A E Weyman
چکیده

Previous investigations have shown that the size of a regurgitant jet as assessed by color Doppler flow mapping is independently affected by the flow rate and velocity (or driving pressure) of the jet. Fluid dynamics theory predicts that jet momentum (given by the orifice flow rate multiplied by velocity) should best predict the appearance of the jet in the receiving chamber and also that this momentum should remain constant throughout the jet. To test this hypothesis, we measured jet area versus driving pressure, flow rate, velocity, orifice area, and momentum and showed that momentum is the optimal jet parameter: jet area = 1.25 (momentum).28, r = 0.989, p less than 0.0001. However, the very curvilinear nature of this function indicated that chamber constraint strongly affected jet area, which limited the ability to predict jet momentum from observed jet area. To circumvent this limitation, we analyzed the velocities per se within the Doppler flow map. For jets formed by 1-81-mm Hg driving pressure through 0.005-0.5-cm2 orifices, the velocity distribution confirmed the fluid dynamic prediction: Gaussian (bell-shaped) profiles across the jet at each level with the centerline velocity decaying inversely with distance from the orifice. Furthermore, momentum was calculated directly from the flow maps, which was relatively constant within the jet and in good agreement with the known jet momentum at the orifice (r = 0.99). Finally, the measured momentum was divided by orifice velocity to yield an accurate estimate of the orifice flow rate (r = 0.99). Momentum was also divided by the square of velocity to yield effective orifice area (r = 0.84). We conclude that momentum is the single jet parameter that best predicts the color area displayed by Doppler flow mapping. Momentum can be measured directly from the velocities within the flow map, and when combined with orifice velocity, momentum provides an accurate estimate of flow rate and orifice area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of impinging wall jet on color Doppler quantification of mitral regurgitation.

BACKGROUND In clinical color Doppler examinations, mitral regurgitant jets are often observed to impinge on the left atrial wall immediately beyond the mitral valve. In accordance with fluid dynamics theory, we hypothesized that a jet impinging on a wall would lose momentum more rapidly, undergo spatial distortion, and thus have a different observed jet area from that of a free jet with an iden...

متن کامل

Quantification of Mitral Regurgitation

Background. In clinical color Doppler examinations, mitral regurgitant jets are often observed to impinge on the left atrial wall immediately beyond the mitral valve. In accordance with fluid dynamics theory, we hypothesized that a jet impinging on a wall would lose momentum more rapidly, undergo spatial distortion, and thus have a different observed jet area from that of a free jet with an ide...

متن کامل

Influence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler flow mapping.

We studied surface adherence and its effects on color Doppler jet areas and color encoding in an in vitro model with a noncompliant receiving chamber into which a steady flow jet was directed parallel to either a straight or a curved surface adjacent to and 4 mm away from the inflow orifice (1.50 mm2) with the control condition being a free jet matched for flow rates and driving pressures. Jets...

متن کامل

A New Method for Noninvasive Quantification of Valvular Regurgitation Based on Conservation of Momentum

The noninvasive Doppler assessment of regurgitant volume from jet size is limited by the fundamental inequality of jet volume and regurgitant volume and by the dependence of jet dimensions on driving pressure and instrument settings for a given flow volume. Therefore, this study addresses the hypothesis that an equation could be derived from basic physical principles to quantify regurgitant vol...

متن کامل

I-45: Color Doppler Sonography of Endometrium in Infertility Patients

Background Endometrial receptivity is one of parameters which determine the reproductive outcome in in vitro fertilization programs. A good blood supply towards the endometrium is usually considered to be an essential requirement for implantation. Blood vessels of the endometrium can be detected by transvaginal color and pulse Doppler sonography. Color Doppler assessment permits better visualiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 1990